Shri Shankaracharya Institute of Professional Management & Technology Department of Computer Science Engineering

Class Test – II Session- July- Dec 2022 Month- January

Sem-5th (A, B & C) Subject- Microprocessor & Interfaces Code- C022511(022)

Time Allowed: 2 hrs

SSIPMT

Time Allowed: 2 hrs

Max Marks: 40

Note: - A	Attempt any 5 question. All questions carry equal marks.		i .	
Q. NO.	Questions	Marks	Levels of Bloom's taxonomy	COs
1.	Explain the Interrupt structure in 8086 and draw the interrupt vector table.	[8]	Understanding	CO3
2.	Write a program to perform 1 byte BCD addition.	[8]	Apply	CO3
3.	Explain 8257 DMA Controller functional block diagram.	[8]	Understanding	CO4
4.	Explain and draw minimum mode of 8086.	[8]	Understanding	CO4
5.	Draw the interface of two 4k*8 EPROM and two 4k*8 RAM with 8086.	[8]	Analyzing	CO4
6.	Explain and draw the block diagram of 80386	[8]	Understanding	CO5

Shri Shankaracharya Institute of Professional Management & Technology Department of Computer Science Engineering

Class Test - II Session- July- Dec 2022 Month- January

Sem-5th (A, B & C) Subject- Microprocessor & Interfaces

Code- C022511(022)

Max Marks: 40

Note: - Attempt any 5 question. All questions carry equal marks.

Levels of Bloom's Marks **COs** Q. NO. Questions taxonomy Explain the Interrupt structure in 8086 and draw the interrupt [8] Understanding CO₃ 1. vector table. CO₃ 2. Write a program to perform 1 byte BCD addition. [8] Apply Explain 8257 DMA Controller functional block diagram. Understanding CO₄ 3. [8] 4. Explain and draw minimum mode of 8086. [8] Understanding CO₄ Draw the interface of two 4k*8 EPROM and two 4k*8 RAM with CO₄ [8] Analyzing 5. 8086. Understanding CO₅ [8] 6. Explain and draw the block diagram of 80386

Shri Shankaracharya Institute of Professional Management & Technology Department of Computer Science & Engineering

Class Test - II Session-July-December, 2022 Month-January 2023

Sem- CSE 5th (Sec- A&B) Subject- Computer Networks Code- C022512(022)

Time Allowed: 2 hrs Max Marks: 40

	2		I evals of	
Q.N.	Questions	Marks	Levels of Bloom's taxonomy	COs
Q1	Describe the need of network layer and explain IPv4 Header format in detail.	[8]	Understanding	C03
Q2	Design and explain the distance vector unicast routing protocols with diagram.	[8]	Creating	CO3
	Evaluate the following flow control protocol:			
ପ୍ତ	a) STOP and WAIT Protocolb) Stop and Wait ARQ	[8]	Evaluating	C04
2	Distinguish open-loop and closed loop congestion control with appropriate diagram.	[8]	Analyzing	C04
62	How cryptography is important for internet security? Describe symmetric key cryptography with example.	8	Understanding	CO3

Shri Shankaracharya Institute of Professional Management & Technology Department of Computer Science & Engineering

Class Test - II Session-July-December, 2022 Month-January 2023

Sem-CSE 5th (Sec-A&B) Subject- Computer Networks Code-C022512(022)

Time Allowed: 2 hrs Max Marks: 40

Q.N. Note: - All questions are compulsory and carries equal marks.. 2 S S 2 S security? Describe symmetric key cryptography Design and explain the distance vector unicast routing protocols with diagram. congestion control with appropriate diagram. Describe the need of network layer and explain IPv4 Header format in detail. with example. How cryptography is important for internet Distinguish open-loop and closed loop Evaluate the following flow control protocol: a) STOP and WAIT Protocolb) Stop and Wait ARQ Questions Marks <u>®</u> **∞** 8 8 8 Understanding Understanding Evaluating Levels of Bloom's Analyzing taxonomy Creating COS CQ4 CO3 CO3**CQ** COs

Shri Shankaracharya Institute of Professional Management & Technology Department of Computer Science & Engineering Class Test – II Session- July-Dec 2022 Month-January Sem-CSE 5th [Section -C] Subject- Computer Networks Code- C022512(022) Time Allowed: 2 hrs

Note: - All questions are compulsory and carries equal marks..

Q.N.	Questions	Marks	Levels of Bloom's taxonomy
QA	Explain multicast routine protocol.	8	Understanding
В	Differentiate between TCP and UDP.	. [8]	Analyzing
8	Describe the basic services provided by the transport layer.	[8]	Understanding
QD	Define the term link state routing protocol.	[8]	Remembering
QE	Define the term cryptography and explain its various types in detail.	<u>8</u>	Understanding CO5

Shri Shankaracharya Institute of Professional Management & Technology Separtment of Computer Science & Engineering Class Test—II Session-July-Dec 2022 Month-January

Sem- CSE 5th [Section -C] Subject- Computer Networks Code- C022512(022)
Time Allowed: 2 hrs

Nax Marks: 40

Note: - All questions are compulsory and carries equal marks..

Q.N.	Questions	Marks	Levels of Bloom's taxonomy
QA	Explain multicast routine protocol.	<u>8</u>	Understanding
В	Differentiate between TCP and UDP.	[8]	Analyzing
2	Describe the basic services provided by the transport layer.	[8]	Understanding
g	Define the term link state routing protocol.	<u>8</u>	Remembering
QE	Define the term cryptography and explain its various types in detail.	8	Understanding

Sem-C	SSIPMT A)	1S	
SE 5th (A,			ri Shank	
B&C) Sul	Class T	Departn	aracharya	
oject- Form	est - II Ses	nent of Co	Institute	
Sem- CSE 5th (A, B&C) Subject- Formal Language and Automata Theory Cour- Cozzos (Nay Marks: 40)	Class Test - II Session- Jul-Dec, 2022 Month-January	Department of Computer Science & Engineering	Shri Shankaracharya Institute of Professional Management & Accessory	
ge and Aut	ec, 2022 M	science &	SIONALIVI	
omata Ine	onth-Januar	Engineer	япавеше	-
ory Coue-	Y	Sur	TI OF TOO	at & Toch
Max Marks	C077513/0		9	hology
40	3			

Time Allowed: 2 hrs

Note: - All	Note: - All questions are compulsory.			
Q.N.	Questions	Marks	Levels of Bloom's taxonomy	COs
A.	Discuss Chomsky classification of Grammar?	8	Understanding	C03
ъ.	Check whether the following grammar is ambiguous or not (assume string by self) S→ iCtS/iCtSeS C→ b S→ a	· <u>8</u>	Applying	CO3
Ç	Convert CFG into CNF form which is given below S -> bA/aB A -> bAA/aS/a B -> aBB/bS/a	[8]	Evaluating	CO3
ָם	Design a Push Down Automata which accepts $L=\{a^nb^{2n} n\geq 1\}$	8	Analyzing	C04
'n	Obtain a Turing Machine to obtain the language $L=\{0^n1^n2^n n\geq 1\}$	[8]	Applying	C04

Shri Shankaracharya Institute of Professional Management & Technology Department of Computer Science & Engineering Class Test – II Session- Jul-Dec, 2022 Month-January Sem- CSE 5th (A, B&C) Subject- Formal Language and Automata Theory Code- C022513(022) Max Marks: 40

SSIPMT A

lote: - Ali	Note: - All questions are compulsory.			
Q.N.	Questions	Marks	Levels of Bloom's taxonomy	COs
A.	Discuss Chomsky classification of Grammar?	8	Understanding	CO3
'n	Check whether the following grammar is ambiguous or not (assume string by self) S → iCtS/iCtSeS C → b S → a	[8]	Applying	C03
Ç	Convert CFG into CNF form which is given below S bA/aB A bAA/aS/a B aBB/bS/a	[8]	Evaluating	CO3
ם	Design a Push Down Automata which accepts $L=\{a^nb^{2n} n\geq 1\}$	[8]	Analyzing	C04
ıj	Obtain a Turing Machine to obtain the language $1 = (0^n 1^n 2^n n > 1)$	[8]	Applying	ç Ç

Shri Shankaracharya Institute of Professional Management & Technology Department of Computer Science & Engineering SSIPMT 4

Class Test - II

Session-July-Dec 2022

Month-January

Course Code: C022514(022) Sem- 5th (A, B & C) Subject- Data Analytics with Python

Time Allowed: 2 hrs

Max Marks: 40

Note:	- All questions are compulsory.		Levels of	
Q.N.	Questions	Marks	Bloom's taxonomy	Cos
		,	-	
Q1	Illustrate the construction of Bar and Histogram.	[8]	Understanding	CO5
Q2	Step by step describe the working of scatter plot.	[8]	Applying	CO5
Q3	Briefly describe the function by row and columns in Pandas.	[8]	Applying	CO4
Q4	Illustrate the window static function of Pandas with suitable example.	[8]	Understanding	CO4
Q5	Explain the uses of Legend in matplotlib library.	[8]	Applying	CO5

Shri Shankaracharya Institute of Professional Management & Technology **Department of Computer Science & Engineering** SSIPMT 4

Class Test - II

Session- July-Dec 2022

Month-January

Course Code: C022514(022) Subject- Data Analytics with Python Sem-5th (A, B & C)

Time Allowed: 2 hrs

Max Marks: 40

Note:	- All questions are compulsory.		Levels of	
Q.N.	Questions	Marks	Bloom's taxonomy	Cos
Q1	Illustrate the construction of Bar and Histogram.	[8]	Understanding	COS
Q2	Step by step describe the working of scatter plot.	[8]	Applying	COS
Q3	Briefly describe the function by row and columns in Pandas.	[8]	Applying	CO ²
Q4	Illustrate the window static function of Pandas with suitable example.	[8]	Understanding	CO ⁴
Q5	Explain the uses of Legend in matplotlib library.	[8]	Applying	СО

Shri Shankaracharya Institute of Professional Management & Technology

Class Test-II Session-July-Dec 2022 Month-January Department of Computer Science & Engineering

SSIPMT (A)

Sem-CSE 5th (A,B,C) Subject- Computer Graphics Code- C022531(022)

Time Allowed: 2 hrs

11000	TORE, The Management of the Control		Levels of	
Q.N.	Questions	Marks	Bloom's taxonomy	COs
The second second second second second	Section I			
	Use the Cohen Sutherland algorithm to clip two lines			}
₽	P1(35,10)- P2(65,40) and P3(65,20)-P4(95,10) against	<u>®</u>	Applying	ç
	a window A(50,10), B(80,10), C(80,40) and D(50,40).			
В.	Discuss any one Polygon clipping algorithm.	[8]	Understanding	. CG
C	Explain any one Visible Surface Detection methods Z-	<u>@</u>	Understanding	CO3
	Buffer or Painters algorithm.			
	Explain spline and convex hull?		•	3
D.	Describe Bezier curve, its Blending function, and	[8]	Understanding	ξ
	properties.			
'n	Given that A0 (1,1), A1(2,3), A2(4,2), and A3(3,1) are the vertices of Bezier control polygon. Determine any	<u>8</u>	Applying	62
	five points on the Bezier curve.			

Shri Shankaracharya Institute of Professional Management & Technology Department of Computer Science & Engineering

SSIPMT A

Class Test-II Session-July-Dec 2022 Month-January

Sem-CSE 5th (A,B,C) Subject- Computer Graphics Code- C022531(022)

Max Marks: 40

Time Allowed: 2 hrs

Max Marks: 40

Note: - All questions are compulsory and carry equal marks.

Q.N.	-		Þ.			n			Ģ			m	
Questions	Section I	Use the Cohen Sutherland algorithm to clip two lines	P1(35,10)- P2(65,40) and P3(65,20)-P4(95,10) against	a window A(50,10), B(80,10), C(80,40) and D(50,40).	Discuss any one Polygon clipping algorithm.	Explain any one Visible Surface Detection methods Z-	Buffer or Painters algorithm.	Explain spline and convex hull?	Describe Bezier curve, its Blending function, and	properties.	Given that A0 $(1,1)$, A1 $(2,3)$, A2 $(4,2)$, and A3 $(3,1)$ are	the vertices of Bezier control polygon. Determine any	five points on the Bezier curve.
Marks			8		[8]	<u>~</u>	3		[8]			8	
Bloom's taxonomy			Applying		Understanding	Understanding			Understanding	The second secon		Applying	
COs		3	S		CO3	CO3			ξ		3	ξ	*******